Dolphins Can Maintain Vigilant Behavior through Echolocation for 15 Days without Interruption or Cognitive Impairment

نویسندگان

  • Brian K. Branstetter
  • James J. Finneran
  • Elizabeth A. Fletcher
  • Brian C. Weisman
  • Sam H. Ridgway
چکیده

In dolphins, natural selection has developed unihemispheric sleep where alternating hemispheres of their brain stay awake. This allows dolphins to maintain consciousness in response to respiratory demands of the ocean. Unihemispheric sleep may also allow dolphins to maintain vigilant states over long periods of time. Because of the relatively poor visibility in the ocean, dolphins use echolocation to interrogate their environment. During echolocation, dolphin produce clicks and listen to returning echoes to determine the location and identity of objects. The extent to which individual dolphins are able to maintain continuous vigilance through this active sense is unknown. Here we show that dolphins may continuously echolocate and accurately report the presence of targets for at least 15 days without interruption. During a total of three sessions, each lasting five days, two dolphins maintained echolocation behaviors while successfully detecting and reporting targets. Overall performance was between 75 to 86% correct for one dolphin and 97 to 99% correct for a second dolphin. Both animals demonstrated diel patterns in echolocation behavior. A 15-day testing session with one dolphin resulted in near perfect performance with no significant decrement over time. Our results demonstrate that dolphins can continuously monitor their environment and maintain long-term vigilant behavior through echolocation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Echolocation behavior of franciscana dolphins (Pontoporia blainvillei) in the wild.

Franciscana dolphins are small odontocetes hard to study in the field. In particular, little is known on their echolocation behavior in the wild. In this study we recorded 357 min and analyzed 1019 echolocation signals in the Rio Negro Estuary, Argentina. The clicks had a peak frequency at 139 kHz, and a bandwidth of 19 kHz, ranging from 130 to 149 kHz. This is the first study describing echolo...

متن کامل

Hybrid Improved Dolphin Echolocation and Ant Colony Optimization for Optimal Discrete Sizing of Truss Structures

This paper presents a robust hybrid improved dolphin echolocation and ant colony optimization algorithm (IDEACO) for optimization of truss structures with discrete sizing variables. The dolphin echolocation (DE) is inspired by the navigation and hunting behavior of dolphins. An improved version of dolphin echolocation (IDE), as the main engine, is proposed and uses the positive attributes of an...

متن کامل

A SIMPLIFIED DOLPHIN ECHOLOCATION OPTIMIZATION METHOD FOR OPTIMUM DESIGN OF TRUSSES

Simplified Dolphin Echolocation (SDE) optimization is an improved version of the Dolphin Echolocation optimization. The dolphin echolocation (DE) is a recently proposed metaheuristic algorithm, which was imitated dolphin’s hunting process. The global or near global optimum solution modeled as dolphin’s bait, dolphins send sound in different directions to discover the best bait among their searc...

متن کامل

Echolocation clicks of free-ranging Chilean dolphins (Cephalorhynchus eutropia).

In this paper, evidence is provided that Chilean dolphins (Cephalorhynchus eutropia) produce ultrasonic echolocation clicks of the narrow-band high-frequency category. Echolocation clicks emitted during approaches of the hydrophones consisted only of narrow-band (rms-BW: 12.0 kHz) single pulses with mean centroid frequencies of about 126 kHz, peak frequencies of 126 kHz, and a 20 dB duration of...

متن کامل

Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild.

Toothed whales use echolocation to locate and track prey. Most knowledge of toothed whale echolocation stems from studies on trained animals, and little is known about how toothed whales regulate and use their biosonar systems in the wild. Recent research suggests that an automatic gain control mechanism in delphinid biosonars adjusts the biosonar output to the one-way transmission loss to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012